CephObjectStore CRD
Rook allows creation and customization of object stores through the custom resource definitions (CRDs). The following settings are available for Ceph object stores.
Example¶
Erasure Coded¶
Erasure coded pools can only be used with dataPools
. The metadataPool
must use a replicated pool.
Note
This sample requires at least 3 bluestore OSDs, with each OSD located on a different node.
The OSDs must be located on different nodes, because the failureDomain
is set to host
and the erasureCoded
chunk settings require at least 3 different OSDs (2 dataChunks
+ 1 codingChunks
).
Object Store Settings¶
Metadata¶
name
: The name of the object store to create, which will be reflected in the pool and other resource names.namespace
: The namespace of the Rook cluster where the object store is created.
Pools¶
The pools allow all of the settings defined in the Block Pool CRD spec. For more details, see the Block Pool CRD settings. In the example above, there must be at least three hosts (size 3) and at least three devices (2 data + 1 coding chunks) in the cluster.
When the zone
section is set pools with the object stores name will not be created since the object-store will the using the pools created by the ceph-object-zone.
metadataPool
: The settings used to create all of the object store metadata pools. Must use replication.dataPool
: The settings to create the object store data pool. Can use replication or erasure coding.preservePoolsOnDelete
: If it is set to 'true' the pools used to support the object store will remain when the object store will be deleted. This is a security measure to avoid accidental loss of data. It is set to 'false' by default. If not specified is also deemed as 'false'.allowUsersInNamespaces
: If a CephObjectStoreUser is created in a namespace other than the Rook cluster namespace, the namespace must be added to this list of allowed namespaces, or specify "*" to allow all namespaces. This is useful for applications that need object store credentials to be created in their own namespace, where neither OBCs nor COSI is being used to create buckets. The default is empty.
Auth Settings¶
The auth
-section allows the configuration of authentication providers in addition to the regular authentication mechanism.
Currently only OpenStack Keystone is supported.
Keystone Settings¶
The keystone authentication can be configured in the spec.auth.keystone
section of the CRD:
Note: With this example configuration S3 is implicitly enabled even though it is not enabled in the protocols
section.
The following options can be configured in the keystone
-section:
acceptedRoles
: The OpenStack Keystone roles accepted by RGW when authenticating against Keystone.implicitTenants
: Indicates whether to use implicit tenants. This can betrue
,false
,swift
ands3
. For more details see the Ceph RadosGW documentation on multitenancy.revocationInterval
: The number of seconds between token revocation checks.serviceUserSecretName
: the name of the user secret containing the credentials for the admin user to use by rgw when communicating with Keystone. See Object Store with Keystone and Swift for more details on what the secret must contain.tokenCacheSize
: specifies the maximum number of entries in each Keystone token cache.url
: The url of the Keystone API endpoint to use.
The protocols section is divided into two parts:
- a section to configure S3
- a section to configure swift
protocols/S3 settings¶
In the s3
section of the protocols
section the following options can be configured:
authKeystone
: Whether S3 should also authenticated using Keystone (true
) or not (false
). If set tofalse
the default S3 auth will be used.enabled
: Whether to enable S3 (true
) or not (false
). The default istrue
even if the section is not listed at all! Please note that S3 should not be disabled in a Ceph Multi Site configuration.
protocols/swift settings¶
In the swift
section of the protocols
section the following options can be configured:
accountInUrl
: Whether or not the Swift account name should be included in the Swift API URL. If set tofalse
(the default), the Swift API will listen on a URL formed likehttp://host:port/<rgw_swift_url_prefix>/v1
. If set totrue
, the Swift API URL will behttp://host:port/<rgw_swift_url_prefix>/v1/AUTH_<account_name>
. This option must be set totrue
if radosgw should support publicly-readable containers and temporary URLs.urlPrefix
: The URL prefix for the Swift API, to distinguish it from the S3 API endpoint. The default isswift
, which makes the Swift API available at the URLhttp://host:port/swift/v1
(orhttp://host:port/swift/v1/AUTH_%(tenant_id)s
if rgw swift account in url is enabled). "Warning: If you set this option to/
, the S3 API is automatically disabled. It is not possible to operate radosgw with an urlPrefix of/
and simultaneously support both the S3 and Swift APIs. [...]" (see Ceph documentation on swift settings).versioningEnabled
: If set totrue
, enables the Object Versioning of OpenStack Object Storage API. This allows clients to put the X-Versions-Location attribute on containers that should be versioned.
Gateway Settings¶
The gateway settings correspond to the RGW daemon settings.
type
:S3
is supportedsslCertificateRef
: If specified, this is the name of the Kubernetes secret(opaque
ortls
type) that contains the TLS certificate to be used for secure connections to the object store. If it is an opaque Kubernetes Secret, Rook will look in the secret provided at thecert
key name. The value of thecert
key must be in the format expected by the RGW service: "The server key, server certificate, and any other CA or intermediate certificates be supplied in one file. Each of these items must be in PEM form." They are scenarios where the certificate DNS is set for a particular domain that does not include the local Kubernetes DNS, namely the object store DNS service endpoint. If adding the service DNS name to the certificate is not empty another key can be specified in the secret's data:insecureSkipVerify: true
to skip the certificate verification. It is not recommended to enable this option since TLS is susceptible to machine-in-the-middle attacks unless custom verification is used.caBundleRef
: If specified, this is the name of the Kubernetes secret (typeopaque
) that contains additional custom ca-bundle to use. The secret must be in the same namespace as the Rook cluster. Rook will look in the secret provided at thecabundle
key name.hostNetwork
: Whether host networking is enabled for the rgw daemon. If not set, the network settings from the cluster CR will be applied.port
: The port on which the Object service will be reachable. If host networking is enabled, the RGW daemons will also listen on that port. If running on SDN, the RGW daemon listening port will be 8080 internally.securePort
: The secure port on which RGW pods will be listening. A TLS certificate must be specified either viasslCerticateRef
orservice.annotations
. Refer to enabling TLS documentation for more details.instances
: The number of pods that will be started to load balance this object store.-
externalRgwEndpoints
: A list of IP addresses to connect to external existing Rados Gateways (works with external mode). This setting will be ignored if theCephCluster
does not haveexternal
spec enabled. Refer to the external cluster section for more details. Multiple endpoints can be given, but for stability of ObjectBucketClaims, we highly recommend that users give only a single external RGW endpoint that is a load balancer that sends requests to the multiple RGWs.Example of external rgw endpoints to connect to:
-
annotations
: Key value pair list of annotations to add. labels
: Key value pair list of labels to add.placement
: The Kubernetes placement settings to determine where the RGW pods should be started in the cluster.resources
: Set resource requests/limits for the Gateway Pod(s), see Resource Requirements/Limits.priorityClassName
: Set priority class name for the Gateway Pod(s)additionalVolumeMounts
: additional volumes to be mounted to the RGW pod. The root directory for each additional volume mount is/var/rgw
. Each volume mount has asubPath
that defines the subdirectory where that volumes files will be mounted. Rook supports several standard Kubernetes volume types. Example: for an additional mount at subPathldap
, mounted from a secret that has keybindpass.secret
, the file would reside at/var/rgw/ldap/bindpass.secret
.-
service
: The annotations to set on to the Kubernetes Service of RGW. The service serving cert feature supported in Openshift is enabled by the following example:
Zone Settings¶
The zone settings allow the object store to join custom created ceph-object-zone.
name
: the name of the ceph-object-zone the object store will be in.
Hosting Settings¶
hosting
settings allow specifying object store endpoint configurations. These settings are only supported for Ceph v18 and higher.
A common use case that requires configuring hosting is allowing virtual host-style bucket access. This use case is discussed in more detail in Rook object storage docs.
advertiseEndpoint
: By default, Rook advertises the most direct connection to RGWs to dependent resources like CephObjectStoreUsers and ObjectBucketClaims. To advertise a different address (e.g., a wildcard-enabled ingress), define the preferred endpoint here. Default behavior is documented in more detail herednsName
: The valid RFC-1123 (sub)domain name of the endpoint.port
: The nonzero port of the endpoint.useTls
: Set to true if the endpoint is HTTPS. False if HTTP.
dnsNames
: When this oradvertiseEndpoint
is set, Ceph RGW will reject S3 client connections who attempt to reach the object store via any unspecified DNS name. Add all DNS names that the object store should accept here. These must be valid RFC-1123 (sub)domain names. Rook automatically adds the known CephObjectStore service DNS name to this list, as well as corresponding CephObjectZonecustomEndpoints
(if applicable).
Note
For DNS names that support wildcards, do not include wildcards. E.g., use mystore.example.com
instead of *.mystore.example.com
.
Runtime settings¶
MIME types¶
Rook provides a default mime.types
file for each Ceph object store. This file is stored in a Kubernetes ConfigMap with the name rook-ceph-rgw-<STORE-NAME>-mime-types
. For most users, the default file should suffice, however, the option is available to users to edit the mime.types
file in the ConfigMap as they desire. Users may have their own special file types, and particularly security conscious users may wish to pare down the file to reduce the possibility of a file type execution attack.
Rook will not overwrite an existing mime.types
ConfigMap so that user modifications will not be destroyed. If the object store is destroyed and recreated, the ConfigMap will also be destroyed and created anew.
Health settings¶
Rook will be default monitor the state of the object store endpoints. The following CRD settings are available:
healthCheck
: main object store health monitoring sectionstartupProbe
: Disable, or override timing and threshold values of the object gateway startup probe.readinessProbe
: Disable, or override timing and threshold values of the object gateway readiness probe.
Here is a complete example:
You can monitor the health of a CephObjectStore by monitoring the gateway deployments it creates. The primary deployment created is named rook-ceph-rgw-<store-name>-a
where store-name
is the name of the CephObjectStore (don't forget the -a
at the end).
Security settings¶
Ceph RGW supports Server Side Encryption as defined in AWS S3 protocol with three different modes: AWS-SSE:C, AWS-SSE:KMS and AWS-SSE:S3. The last two modes require a Key Management System (KMS) like HashiCorp Vault. Currently, Vault is the only supported KMS backend for CephObjectStore.
Refer to the Vault KMS section for details about Vault. If these settings are defined, then RGW will establish a connection between Vault and whenever S3 client sends request with Server Side Encryption. Ceph's Vault documentation has more details.
The security
section contains settings related to KMS encryption of the RGW.
For RGW, please note the following:
VAULT_SECRET_ENGINE
: the secret engine which Vault should use. Currently supports kv and transit. AWS-SSE:KMS supportstransit
engine andkv
engine version 2. AWS-SSE:S3 only supportstransit
engine.- The Storage administrator needs to create a secret in the Vault server so that S3 clients use that key for encryption for AWS-SSE:KMS
- TLS authentication with custom certificates between Vault and CephObjectStore RGWs are supported from ceph v16.2.6 onwards
tokenSecretName
can be (and often will be) the same for both kms and s3 configurations.AWS-SSE:S3
requires Ceph Quincy v17.2.3 or later.
Deleting a CephObjectStore¶
During deletion of a CephObjectStore resource, Rook protects against accidental or premature destruction of user data by blocking deletion if there are any object buckets in the object store being deleted. Buckets may have been created by users or by ObjectBucketClaims.
For deletion to be successful, all buckets in the object store must be removed. This may require manual deletion or removal of all ObjectBucketClaims. Alternately, the cephobjectstore.ceph.rook.io
finalizer on the CephObjectStore can be removed to remove the Kubernetes Custom Resource, but the Ceph pools which store the data will not be removed in this case.
Rook will warn about which buckets are blocking deletion in three ways:
- An event will be registered on the CephObjectStore resource
- A status condition will be added to the CephObjectStore resource
- An error will be added to the Rook Ceph Operator log
If the CephObjectStore is configured in a multisite setup the above conditions are applicable only to stores that belong to a single master zone. Otherwise the conditions are ignored. Even if the store is removed the user can access the data from a peer object store.