Ceph Dashboard
The dashboard is a very helpful tool to give you an overview of the status of your Ceph cluster, including overall health, status of the mon quorum, status of the mgr, osd, and other Ceph daemons, view pools and PG status, show logs for the daemons, and more. Rook makes it simple to enable the dashboard.
Enable the Ceph Dashboard¶
The dashboard can be enabled with settings in the CephCluster CRD. The CephCluster CRD must have the dashboard enabled
setting set to true
. This is the default setting in the example manifests.
The Rook operator will enable the ceph-mgr dashboard module. A service object will be created to expose that port inside the Kubernetes cluster. Rook will enable port 8443 for https access.
This example shows that port 8443 was configured.
The first service is for reporting the Prometheus metrics, while the latter service is for the dashboard. If you are on a node in the cluster, you will be able to connect to the dashboard by using either the DNS name of the service at https://rook-ceph-mgr-dashboard-https:8443
or by connecting to the cluster IP, in this example at https://10.110.113.240:8443
.
Login Credentials¶
After you connect to the dashboard you will need to login for secure access. Rook creates a default user named admin
and generates a secret called rook-ceph-dashboard-password
in the namespace where the Rook Ceph cluster is running. To retrieve the generated password, you can run the following:
Configure the Dashboard¶
The following dashboard configuration settings are supported:
urlPrefix
If you are accessing the dashboard via a reverse proxy, you may wish to serve it under a URL prefix. To get the dashboard to use hyperlinks that include your prefix, you can set theurlPrefix
setting.port
The port that the dashboard is served on may be changed from the default using theport
setting. The corresponding K8s service exposing the port will automatically be updated.ssl
The dashboard may be served without SSL (useful for when you deploy the dashboard behind a proxy already served using SSL) by setting thessl
option to be false.
Visualization of 'Physical Disks' section in the dashboard¶
Information about physical disks is available only in Rook host clusters.
The Rook manager module is required by the dashboard to obtain the information about physical disks, but it is disabled by default. Before it is enabled, the dashboard 'Physical Disks' section will show an error message.
To prepare the Rook manager module to be used in the dashboard, modify your Ceph Cluster CRD:
And apply the changes:
Once the Rook manager module is enabled as the orchestrator backend, there are two settings required for showing disk information:
ROOK_ENABLE_DISCOVERY_DAEMON
: Set totrue
to provide the dashboard the information about physical disks. The default isfalse
.ROOK_DISCOVER_DEVICES_INTERVAL
: The interval for changes to be refreshed in the set of physical disks in the cluster. The default is60
minutes.
Modify the operator.yaml, and apply the changes:
Viewing the Dashboard External to the Cluster¶
Commonly you will want to view the dashboard from outside the cluster. For example, on a development machine with the cluster running inside minikube you will want to access the dashboard from the host.
There are several ways to expose a service that will depend on the environment you are running in. You can use an Ingress Controller or other methods for exposing services such as NodePort, LoadBalancer, or ExternalIPs.
Node Port¶
The simplest way to expose the service in minikube or similar environment is using the NodePort to open a port on the VM that can be accessed by the host. To create a service with the NodePort, save this yaml as dashboard-external-https.yaml
.
Now create the service:
You will see the new service rook-ceph-mgr-dashboard-external-https
created:
In this example, port 31176
will be opened to expose port 8443
from the ceph-mgr pod. Find the ip address of the VM. If using minikube, you can run minikube ip
to find the ip address. Now you can enter the URL in your browser such as https://192.168.99.110:31176
and the dashboard will appear.
Load Balancer¶
If you have a cluster on a cloud provider that supports load balancers, you can create a service that is provisioned with a public hostname. The yaml is the same as dashboard-external-https.yaml
except for the following property:
Now create the service:
You will see the new service rook-ceph-mgr-dashboard-loadbalancer
created:
Now you can enter the URL in your browser such as https://a7f23e8e2839511e9b7a5122b08f2038-1251669398.us-east-1.elb.amazonaws.com:8443
and the dashboard will appear.
Ingress Controller¶
If you have a cluster with an nginx Ingress Controller and a Certificate Manager (e.g. cert-manager) then you can create an Ingress like the one below. This example achieves four things:
- Exposes the dashboard on the Internet (using a reverse proxy)
- Issues a valid TLS Certificate for the specified domain name (using ACME)
- Tells the reverse proxy that the dashboard itself uses HTTPS
- Tells the reverse proxy that the dashboard itself does not have a valid certificate (it is self-signed)
Customise the Ingress resource to match your cluster. Replace the example domain name rook-ceph.example.com
with a domain name that will resolve to your Ingress Controller (creating the DNS entry if required).
Now create the Ingress:
You will see the new Ingress rook-ceph-mgr-dashboard
created:
And the new Secret for the TLS certificate:
You can now browse to https://rook-ceph.example.com/
to log into the dashboard.