Documentation

    PLEASE NOTE: This document applies to an unreleased version of Rook. It is strongly recommended that you only use official releases of Rook, as unreleased versions are subject to changes and incompatibilities that will not be supported in the official releases.

    If you are using an official release version of Rook, you should refer to the documentation for your specific version.

    Documentation for other releases can be found by using the version selector in the bottom left of any doc page.

    Ceph CSI Drivers

    There are two CSI drivers integrated with Rook that will enable different scenarios:

    • RBD: This driver is optimized for RWO pod access where only one pod may access the storage
    • CephFS: This driver allows for RWX with one or more pods accessing the same storage

    The drivers are enabled automatically with the Rook operator. They will be started in the same namespace as the operator when the first CephCluster CR is created.

    For documentation on consuming the storage:

    Configure CSI Drivers in non-default namespace

    If you’ve deployed the Rook operator in a namespace other than “rook-ceph”, change the prefix in the provisioner to match the namespace you used. For example, if the Rook operator is running in the namespace “my-namespace” the provisioner value should be “my-namespace.rbd.csi.ceph.com”. The same provisioner name needs to be set in both the storageclass and snapshotclass.

    Liveness Sidecar

    All CSI pods are deployed with a sidecar container that provides a prometheus metric for tracking if the CSI plugin is alive and runnning. These metrics are meant to be collected by prometheus but can be acceses through a GET request to a specific node ip. for example curl -X get http://[pod ip]:[liveness-port][liveness-path] 2>/dev/null | grep csi the expected output should be

    $ curl -X GET http://10.109.65.142:9080/metrics 2>/dev/null | grep csi
    # HELP csi_liveness Liveness Probe
    # TYPE csi_liveness gauge
    csi_liveness 1
    

    Check the monitoring doc to see how to integrate CSI liveness and grpc metrics into ceph monitoring.

    Dynamically Expand Volume

    Prerequisite

    • For filesystem resize to be supported for your Kubernetes cluster, the kubernetes version running in your cluster should be >= v1.15 and for block volume resize support the Kubernetes version should be >= v1.16. Also, ExpandCSIVolumes feature gate has to be enabled for the volume resize functionality to work.

    To expand the PVC the controlling StorageClass must have allowVolumeExpansion set to true. csi.storage.k8s.io/controller-expand-secret-name and csi.storage.k8s.io/controller-expand-secret-namespace values set in storageclass. Now expand the PVC by editing the PVC pvc.spec.resource.requests.storage to a higher values than the current size. Once PVC is expanded on backend and same is reflected size is reflected on application mountpoint, the status capacity pvc.status.capacity.storage of PVC will be updated to new size.